MATH 255: DIFFERENTIAL EQUATIONS 2025-2026, FALL TERM

Course Syllabus

GENERAL IN	FORMATION
------------	-----------

Section 1	Instructor	Prof. Dr. Nasser Aghazadeh
	E-mail	nasseraghazadeh@iyte.edu.tr
	Address	Office 124, Dept. of Mathematics
Section 2	Instructors	Asst. Prof. Dr. Bekir Baytaş
	E-mail	bekirbaytas@iyte.edu.tr
	Address	Office 104, Dept. of Mathematics
Section 3	Instructor	Dr. Kemal Cem Yılmaz
	E-mail	cemyilmaz@iyte.edu.tr
	Address	Office 116, Dept. of Mathematics
Section 4	Instructor	Prof. Dr. Şirin Atılgan Büyükaşık
	E-mail	sirinatilgan@iyte.edu.tr
	Address	Office 207, Dept. of Mathematics
Section 5	Instructor	Assoc. Prof. Dr. Gökhan Şahan
	E-mail	gsahan@iyte.edu.tr
	Address	Office 211, Dept. of Mathematics
Section 5	E-mail	gsahan@iyte.edu.tr

WEEKLY SCHEDULE

Monday	Tuesday	Wednesday	Thursday	Friday
Monday	Section 1 13:30-15:15 Prof. Dr. Erdal Saygın Lecture Hall Section 2 13:30-15:15 Faculty of Architecture "Yeni Amfi" Section 3 13:30-15:15 Dept. of Comp. Eng. Class D5 Section 4 13:30-15:15 Eng. Building C Class B211 Section 5	Wednesday	Section 1 13:30-15:15 Prof. Dr. Erdal Saygın Lecture Hall Section 2 13:30-15:15 Faculty of Architecture "Yeni Amfi" Section 3 13:30-15:15 Dept. of Comp. Eng. Class D5 Section 4 13:30-15:15 Eng. Building C Class B211 Section 5	Friday
	13:30-15:15 Dept. of Mathematics Z-11 Lecture Hall		13:30-15:15 Dept. of Mathematics Z-11 Lecture Hall	

COURSE DESCRIPTION

A first step to construct a mathematical model that describes a physical phenomenon is to observe and understand the *movement* process. A movement action, brings along the notion of *rate of change*. Therefore, a way to establish a mathematical model for a dynamic process is to write a mathematical relation that involves the state and its rate of changes. If the movement is happening continuously, then a better way to express the rate of changes that is more consistent with the reality is to take into account the instantaneous rate of changes, so called derivatives. Then, in this case, the resulting relation becomes a relation involving the state and its

derivatives, called a differential equation.

In this one semester introductory course, the goal is to give fundamental concepts of differential equations to the students. Content of the course mainly covers classification of differential equations, strategies for deriving solutions to various class of differential equations or systems of differential equations, analyzing them from geometrical point of view and establishing mathematical models of some basic real world applications.

LEARNING OUTCOMES

Upon successfully completing this course, it is expected that students have following outcomes:

- Be able to identify and classify a differential equation with respect to its order and linearity. Be able to determine whether it is homogeneous or nonhomogeneous.
- Understand that many problems from real world can be modeled by differential equations.
- Be able to develop the slope field for a first-order differential equation to illustrate geometrical view of the general solution.
- Understand importance of existence and uniqueness of a solution to a given initial-value problem.
- Understand that different class of differential equations have different type of solving strategies. Be able to determine and apply appropriate solving strategies to derive an analytical solution for a given differential equation.
- Be able to express a higher-order linear differential equation as a system of first-order differential equations.
- Be able to solve system of first-order differential equations. Be able to analyze asymptotic behaviour of solutions by investigating the associated coefficient matrix of the system of differential equations.
- Be able to use Laplace transform to solve second-order linear differential equations with discontinuous source functions.

PREREQUISITES

You should be familiar with the following subjects of first-year calculus class.

- Limits of single variable functions
- Derivatives of single variable functions and differentiation techniques
- Integrals of single variable functions and integration techniques
- Notion of power series
- Partial differentiation

If you feel inadequate on at least one of these subjects, it is recommended for you to consult the related sections of first years Calculus course.

Course Materials and Resources

Communication. All announcements will be posted via Microsoft Teams. Please use the code

3kqe0tu

to enroll our Team Room "Math 255: Differential Equations, Fall 25-26" in Microsoft Teams.

Textbooks. Our main textbook is

1. W.E. Boyce and R.C. Diprima, (2017). *Elementary differential equations and boundary value problems*, 11th edition. John Wiley & Sons Inc., New York.

As a supplementary source, you can use following textbooks:

- 2. R.K. Nagle, E.B. Staff and A.D. Snider, (2018). *Fundamentals of differential equations*, 9th edition. Pearson, London.
- 3. S.L. Ross (1984). Differential equations, 3^{rd} edition. John Wiley & Sons, Inc., New York.

Electronic Sources. You can use the following set of video lectures that will aid you to improve your learning on differential equations.

4. Differential Equations - Video Lectures

GRADING POLICY AND EXPECTATIONS

Exams. There will be 3 Midterm Examinations 20% of your total grade each and 1 Final Examination %40 of your total grade. Each exam will be out of 110 points, where +10 bonus point is from your WebWork homeworks (see below). If you miss an exam and have an official excuse (such as a valid medical report), you can take the make-up exam. Your grade from the make-up exam will be counted for your missing one. Note that there will be only one make-up exam which will be held at the end of the semester (see Course Outline section).

WebWork. Each week we will share a set of homework via WebWork. Solving these exercises and returning your works are not mandatory but it is strongly expected. To encourage you to do your homeworks, some of those exercises will exactly appear in the exams.

Suggested Exercises. Other than WebWork homeworks, we share some exercises from your main textbook (see Course Outline section), which we recommend you to solve them. The exercises are chosen from the main textbook.

Attendance. Attendance to lectures is not mandatory but it is strongly expected.

Grading. Based on the above criteria, your Total Grade will be evaluated by the following formula:

Total Grade = 20% of M-II + 20% of M-III + 40% of F

Your Letter Grade will be evaluated according to your Total Grade. Unless indicated otherwise, evaluation of the letter grades will based on the catalog system declared in IZTECH Graduate Education Regulations.

Total Grade	90–100	85–89	80–84	75–79	70–74	65–69	60–64	50–59	0–49
Letter Grade	AA	BA	ВВ	СВ	CC	DC	DD	FD	FF

OFFICE HOURS

Tutoring Center schedule will be announced via Microsoft Teams.

IMPORTANT DATES AND CALENDAR

See the following table and the calendar.

Detailed information will be announced via Microsoft Teams.

		Se	pteml	ber					O	ctob	er		
S	M	T	W	T	F	S	S	M	T	W	T	F	S
	01	02	03	04	05	06				01	02	03	04
07	08	09	10	11	12	13	05	06	07	08	09	10	11
14	15	16	17	18	19	20	12	13	14	15	16	17	18
21	22	23	24	25	26	27	19	20	21	22	23	24	25
28	29	30					26	27	28	29	30	31	
		No	veml	ber					De	ceml	er		
S	M	N o	veml W	oer T	F	S	S	M	De T	ecemb W	oer T	F	S
S	M				F	S 01	S	M 01				F 05	S 06
S 02	M 03				F 07		S 07		Т	W	Т		
		T	W	T		01		01	T 02	W 03	T 04	05	06
02	03	T 04	W 05	T 06	07	01 08	07	01 08	T 02 09	W 03 10	T 04 11	05 12	06 13
02 09	03 10	T 04 11	W 05 12	T 06 13	07 14	01 08 15	07 14	01 08 15	T 02 09 16	W 03 10 17	T 04 11 18	05 12 19	06 13 20
02 09 16	03 10 17	T 04 11 18	W 05 12 19	T 06 13 20	07 14 21	01 08 15 22	07 14 21	01 08 15 22	T 02 09 16 23	W 03 10 17 24	T 04 11 18	05 12 19	06 13 20

2026

January								
S	M	T	W	T	F	S		
				01	02	03		
04	05	06	07	08	09	10		
11	12	13	14	15	16	17		
18	19	20	21	22	23	24		
25	26	27	28	29	30	31		

Lectures
Semester Starts & Ends
Finals Week

New Year Midterms & Make-up Exam

COURSE OUTLINE

WEEKS	SUBJECTS	SECTIONS IN TEXTBOOK	SUGGESTED EXERCISES
Week 1	Chapter 1: Introduction	Section 1.1	Page 8,9: 3,4,8,9,11-16,23
, veek 1	- Basic concepts	Section 1.2	Page 22: 1-4,6,9
	- Classification	Section 1.3	1 4ge 22. 1 1,0,5
	– Direction fields	Section 1.5	
Week 2	Chapter 2: First-Order Differential	Section 2.1	Page 31, 32: 9,11,18,20,21,23
VVCCR 2	Equations	Problems section in Sec-	Page 58: 24,25
	– Linear equations, method of integration		1 age 30. 24,23
	factors	Hori 2.4, page 50	
	– Bernoulli equations		
Week 3	- Separable equations	Section 2.2	Page 38,39: 2,6,8,9,14,19,23,26,
VVCCRO	Equations that can be transformed to		28,30
	separable equations	tion 2.2, page 38-39	Page 47: 1,2
	Modeling with first-order equations	Section 2.3	1 4 4 5 6 7 7 1 7 2
Week 4	- Exact equations and integration factors	Section 2.6	Page 75: 3,4,6,7,12,16,20-22
Week 5	- Existence and uniqueness theorems	Section 2.4	Page 57,58: 1,3,5,7,9,17,21
VVCCRO	- Midterm 1	Section 2.1	1 4ge 07,000. 1,0,0,7,7,17,21
Week 6	Chapter 3: Second-Order Linear Equa-	Section 3.1	Page 119: 4,5,6,10,14,20,21
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tions	Section 3.2	Page 109: 5,6,11,12,16-18,21
	Introduction and general theory	Section 3.3	Page 125: 3,4,9,10,14,15,18
	 Homogeneous equations with constant 	Section 5.5	1 4ge 120. 0/1///10/11/10/10
	coefficients		
Week 7	Homogeneous equations with constant	Section 3.4	Page 132: 3,5,7,11,12,28,29
/ veek /	coefficients	Section 3.5	Page 141: 4,5,8,10,12,13
	Nonhomogeneous equations	0001011 010	1 uge 1111 1/6/6/15/12/16
	 Method of undetermined coefficients 		
Week 8	- Variation of parameters	Section 3.6	Page 146: 6-8,11,13,14
, veek o	 Application to constant coefficient lin- 		Page 157-158: 3,4,18
	ear equations: mechanical vibrations	Section 3.8	Page 167-168: 4, 14
	ear equation internations vibrations		1 486 107 1007 1711
Week 9	– Variable coefficient equations	Section 3.4	Page 133: 19, 21, 22
	 Method of reduction of order 		, ,
	– Midterm II		
Week 10	– Series solutions	Section 5.2	Page 204: 3,4,7-9,18
	– Cauchy-Euler equations	Section 5.3	Page 209-210: 8, 17
	,	Section 5.4	Page 218-219: 3,6,9,17,19,23,27
Week 11	Chapter 4: Laplace Transformation	Section 6.1	Page 247: 1,2,7,19,17
	– Definition and properties of Laplace	Section 6.2	Page 255: 1,3,4,6,9,12
	transformation		
	– Solution of initial value problems by us-		
	ing Laplace transform		
Week 12	0 1	Section 6.3	Page 262-263: 1,4-7,14,16,23,27
	_	Section 6.4	Page 268: 1,2,6,7
Week 13	Chapter 5: System of Ordinary Differ-	Section 7.2	Page 284-285: 1,2,4,6
	ential Equations	Section 7.3	Page 293: 1,2,3
	– Review on matrices and system of lin-		Page 304: 14-17
	ear equations		
	– Midterm III		
Week 14	- Fundamentals on first-order linear	Section 7.4	Page 308: 1,2,3
	equtions	Section 7.5	Page 318: 1,2,3, 17,18,19
	– Distinct eigenvalues	Section 7.6	Page 327: 1,2,3
	– Complex eigenvalues		
Week 15	1 0	Section 7.7	Page 336: 1,3,5
	– Fundamental matrices	Section 7.8	Page 343: 1,2,3,6